Alkynes

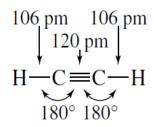
Nomenclature

HC
$$\equiv$$
CCH₃ HC \equiv CCH₂CH₃ CH₃CC \equiv CCH₃ (CH₃)₃CC \equiv CCH₃
Propyne 1-Butyne 2-Butyne 4,4-Dimethyl-2-pentyne

Acetylene; Monosubstituted alkynes

Sources of alkynes

CaO + 3C
$$\xrightarrow{1800-2100^{\circ}\text{C}}$$
 CaC₂ + CO


Calcium oxide Carbon Calcium carbide Carbon monoxide (from limestone) (from coke)

$$\operatorname{Ca}^{2+}\begin{bmatrix} \ddot{C} \\ \parallel \\ C \end{bmatrix}^{2-} + 2\operatorname{H}_2\operatorname{O} \longrightarrow \operatorname{Ca}(\operatorname{OH})_2 + \operatorname{HC} = \operatorname{CH}$$

Calcium carbide Water Calcium hydroxide Acetylene

CH₂=CH₂
$$\stackrel{\text{heat}}{\rightleftharpoons}$$
 HC=CH + H₂
Ethylene Acetylene Hydrogen

9.3 PHYSICAL PROPERTIES OF ALKYNES

Alkynes resemble alkanes and alkenes in their physical properties. They share with these other hydrocarbons the properties of low density and low water-solubility. They are slightly more polar and generally have slightly higher boiling points than the corresponding alkanes and alkenes.

TABLE 9.1 Structural Features of Ethane, Ethylene, and Acetyler

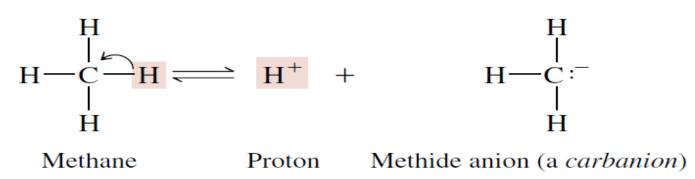
Feature	Ethane	Ethylene	Acetylene
Systematic name	Ethane	Ethene	Ethyne
Molecular formula	C₂H ₆	C ₂ H ₄	C ₂ H ₂
Structural formula	H H H	C = C	Н—С≡С—Н
C—C bond distance, pm C—H bond distance, pm H—C—C bond angles C—C bond dissociation energy, kJ/mol (kcal/mol) C—H bond dissociation energy, kJ/mol (kcal/mol) Hybridization of carbon s character in C—H bonds Approximate acidity as measured by K _a (pK _a)	153	134	120
	111	110	106
	111.0°	121.4°	180°
	368 (88)	611 (146)	820 (196)
	410 (98)	452 (108)	536 (128)
	sp ³	sp ²	sp
	25%	33%	50%
	10 ⁻⁶² (62)	10 ⁻⁴⁵ (45)	10 ⁻²⁶ (26)

H—C
$$\equiv$$
C—CH₃

$$H = C = C$$

$$106 \text{ pm}$$

$$121 \text{ pm}$$


$$121 \text{ pm}$$

$$108 \text{ pm}$$

$$134 \text{ pm}$$

$$108 \text{ pm}$$

Acidity of acetylene

$${
m CH_4} < {
m NH_3} < {
m H_2O} < {
m HF}$$

Methane
 $K_a \approx 10^{-60}$
 $pK_a \approx 60$

(weakest acid)

 ${
m Mamonia} \atop \approx 10^{-36}$
 $\approx 10^{-36}$
 $\approx 10^{-36}$
 $\approx 10^{-36}$
 $\approx 10^{-36}$
 ≈ 36
 ≈ 36
 $= 15.7$
 $= 3.5 \times 10^{-4}$
 $= 3.2$
(strongest acid)

CH₃CH₃
$$<$$
 CH₂=CH₂ $<$ HC=CH

Ethane

 $K_a \approx 10^{-62}$

p $K_a \approx 62$

Ethylene

 $\approx 10^{-45}$
 $\approx 10^{-26}$
 ≈ 45

Ethylene

 $= 10^{-26}$
 $= 26$

(weakest acid)

(strongest acid)

$$H-C \equiv C \xrightarrow{} H \Longrightarrow H^+ + H-C \equiv C \xrightarrow{} sp$$
Acetylene Proton Acetylide ion

$$(CH_3)_3CC \equiv CH$$
 $K_a = 3 \times 10^{-26} (pK_a = 25.5)$

3,3-Dimethyl-1-butyne

H—C=CH + :ÖH
$$\longrightarrow$$
 H—C=C: + H—ÖH

Acetylene (weaker acid) (weaker base) (stronger base) (stronger acid) $K_a = 10^{-26}$ $pK_a = 26$ $pK_a = 15.7$

H—C=CH+ :NH₂ — H—C=C: + H—NH₂

Acetylene Amide ion (stronger acid)
$$K_a = 10^{-26}$$
 (weaker base)
 $K_a = 26$

Acetylide ion (weaker base)
 $K_a = 10^{-36}$ (weaker acid)
 $K_a = 36$

Preparation of acetylenes

$$H-C \equiv C-H \longrightarrow R-C \equiv C-H \longrightarrow R-C \equiv C-R'$$
Acetylene Monosubstituted Disubstituted or terminal alkyne derivative of acetylene

$$HC \equiv CH + NaNH_2 \longrightarrow HC \equiv CNa + NH_3$$

Acetylene Sodium amide Sodium acetylide Ammonia

Alkylation

$$HC \equiv CNa + RX \longrightarrow HC \equiv CR + NaX$$
 via $HC \equiv C : R \longrightarrow X$
Sodium Alkyl Alkyne Sodium halide

Functional group transformation; Carbon-carbon bond formation

HC
$$\equiv$$
CNa + CH₃CH₂CH₂CH₂Br $\xrightarrow{\text{NH}_3}$ CH₃CH₂CH₂CH₂C \equiv CH Sodium acetylide 1-Bromobutane 1-Hexyne (70–77%)

Limitation

$$HC \equiv C: \xrightarrow{CH_3} H \xrightarrow{CH_2} C \xrightarrow{Br} \xrightarrow{E2} HC \equiv CH + CH_2 = C \xrightarrow{CH_3} + Br \xrightarrow{CH_3}$$

Acetylide tert-Butyl bromide Acetylene 2-Methylpropene Bromide

HC=CH
$$\xrightarrow{1. \text{ NaNH}_2, \text{ NH}_3}$$
 HC=CCH₂CH₃ $\xrightarrow{1. \text{ NaNH}_2, \text{ NH}_3}$ CH₃C=CCH₂CH₃

Acetylene 1-Butyne 2-Pentyne (81%)

The desired S_N 2 substitution pathway is observed only with methyl and primary alkyl halides.

Double dehydrohalogenation

Geminal dihalide Sodium amide

Alkyne

Ammonia

Sodium halide

Vicinal dihalide

Sodium amide

Alkyne

Ammonia

Sodium halide

$$(CH_3)_3CCH_2CHCl_2 \xrightarrow{3NaNH_2} (CH_3)_3CC \equiv CNa \xrightarrow{H_2O} (CH_3)_3CC \equiv CH$$
1,1-Dichloro-3,3-
dimethylbutane

Sodium salt of alkyne product (not isolated)

3,3-Dimethyl-
1-butyne (56–60%)

$$CH_{3}(CH_{2})_{7}CHCH_{2}Br \xrightarrow{3NaNH_{2}} CH_{3}(CH_{2})_{7}C \Longrightarrow CNa \xrightarrow{H_{2}O} CH_{3}(CH_{2})_{7}C \Longrightarrow CH$$

$$Br$$

1,2-Dibromodecane

Sodium salt of alkyne product (not isolated)

1-Decyne (54%)

$$(CH_3)_2CHCH = CH_2 \xrightarrow{Br_2} (CH_3)_2CHCHCH_2Br \xrightarrow{1. \text{ NaNH}_2, \text{ NH}_3} (CH_3)_2CHC = CH$$

$$Br$$

3-Methyl-1-butene 1,2-Dibromo-3-methylbutane

3-Methyl-1-butyne (52%)

Reactions

RC
$$\equiv$$
CR' + 2H₂ $\xrightarrow{\text{Pt, Pd, Ni, or Rh}}$ RCH₂CH₂R'

Alkyne Hydrogen Alkane

CH₃CH₂CHCH₂C \equiv CH + 2H₂ $\xrightarrow{\text{Ni}}$ CH₃CH₂CHCH₂CH₂CH₃

CH₃

4-Methyl-1-hexyne Hydrogen 3-Methylhexane (77%)

$$CH_3CH_2C = CH \qquad CH_3C = CCH_3$$

$$-\Delta H^{\circ} \text{ (hydrogenation)} \qquad \begin{array}{c} 1\text{-Butyne} & 2\text{-Butyne} \\ 292 \text{ kJ/mol} & 275 \text{ kJ/mol} \\ (69.9 \text{ kcal/mol}) & (65.6 \text{ kcal/mol}) \end{array}$$

Alkenes are intermediates in the hydrogenation of alkynes to alkanes.

RC=CR'
$$\xrightarrow{H_2}$$
 RCH=CHR' $\xrightarrow{H_2}$ RCH₂CH₂R'
Alkyne Alkene Alkane

CH
$$+$$
 H_2 $\xrightarrow{Pd/CaCO_3}$ OH $+$ H_2 $\xrightarrow{lead\ acetate,\ quinoline}$ OH $-Ethynylcyclohexanol Hydrogen 1-Vinylcyclohexanol (90–95%)$

$$CH_{3}(CH_{2})_{3}C \Longrightarrow C(CH_{2})_{3}CH_{3} \xrightarrow{H_{2}} C \Longrightarrow C$$

$$CH_{3}(CH_{2})_{3}C \Longrightarrow C(CH_{2})_{3}CH_{3} \xrightarrow{H_{2}} C \Longrightarrow C$$

$$H$$
5-Decyne
$$(Z)$$
-5-Decene (87%)

CH₃CH₂C=CCH₂CH₃
$$\xrightarrow{\text{Na}}$$
 CH₃CH₂ C=C

H

CH₂CH₂CH₃

3-Hexyne

(E)-3-Hexene (82%)

Overall Reaction:

$$RC \equiv CR' + 2Na + 2NH_3 \longrightarrow RCH \equiv CHR' + 2NaNH_2$$

Alkyne Sodium Ammonia Trans alkene Sodium amide

Step 1: Electron transfer from sodium to the alkyne. The product is an anion radical.

$$\overrightarrow{RC} = \overrightarrow{CR'} + \overrightarrow{Na} \longrightarrow \overrightarrow{RC} = \overrightarrow{\overline{C}R'} + \overrightarrow{Na}^+$$
Alkyne Sodium Anion radical Sodium ion

Step 2: The anion radical is a strong base and abstracts a proton from ammonia.

$$\overrightarrow{RC} = \overrightarrow{\overrightarrow{CR'}} + \overrightarrow{H} - \overrightarrow{\overrightarrow{N}H_2} \longrightarrow \overrightarrow{RC} = \overrightarrow{CHR'} + \overrightarrow{:}\overrightarrow{NH_2}$$

Anion Ammonia Alkenyl Amide ion radical

Step 3: Electron transfer to the alkenyl radical.

$$R\dot{C} = CHR' + Na \longrightarrow R\ddot{C} = CHR' + Na^+$$
Alkenyl Sodium Alkenyl Sodium ion radical Sodium anion

Step 4: Proton transfer from ammonia converts the alkenyl anion to an alkene.

$$H_2\ddot{\ddot{N}}$$
 $+$ $H_2\ddot{\ddot{N}}$:

Ammonia Alkenyl anion Alkene Amide ion

Addition of hydrogen halides

RC
$$\equiv$$
CR' + HX \longrightarrow RCH \equiv CR' X

Alkyne Hydrogen halide Alkenyl halide

CH₃CH₂CH₂CC \equiv CH + HBr \longrightarrow CH₃CH₂CH₂CH₂C=CH₂

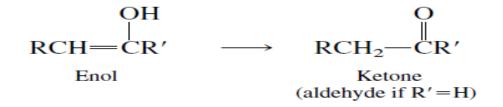
Br

1-Hexyne Hydrogen bromide 2-Bromo-1-hexene (60%)

$$RC = CH + H \xrightarrow{C} X: \xrightarrow{slow} RC = CH_2 + : X: \xrightarrow{fast} RC = CH_2$$

$$X: X: X: X: Alkyne Hydrogen halide Alkenyl cation Halide ion Alkenyl halide$$

Rate = k[alkyne][HX]²


$$RC = CR' + \xrightarrow{HX} RCH = CR' \xrightarrow{HX} RCH_2CR'$$

$$X$$
Alkyne Alkenyl halide Geminal dihalide

$$CH_{3}CH_{2}C \equiv CCH_{2}CH_{3} + 2HF \longrightarrow CH_{3}CH_{2}CH_{2}CH_{2}CH_{3} \longrightarrow CH_{3}CH_{2}CH_{2}CH_{3} \longrightarrow CH_{3}CH_{2}CH_{2}CH_{2}CH_{3} \longrightarrow CH_{3}CH_{2}CH_{2}CH_{2}CH_{3} \longrightarrow CH_{3}CH_{2$$

$$RC = CR' + H_2O \xrightarrow{slow} RCH = CR' \xrightarrow{fast} RCH_2CR'$$
Alkyne Water Enol R' = H; aldehyde (not isolated) R' = alkyl; ketone

Overall Reaction:

Step 1: The enol is formed in aqueous acidic solution. The first step of its transformation to a ketone is proton transfer to the carbon–carbon double bond.

Step 2: The carbocation transfers a proton from oxygen to a water molecule, yielding a ketone

FIGURE 9.6 Conversion of an enol to a ketone takes place by way of two solvent-mediated proton transfers. A proton is transferred to carbon in the first step, then removed from oxygen in the second.

$$\begin{array}{ccc} & \overset{\cdot}{\circ} \overset{\circ}{H} & \overset{+}{\circ} \overset{\circ}{H} \\ RCH_2 \overset{-}{\underset{+}{\subset}} & CR' & \\ A & B & \end{array}$$

$$CH_3CH_2CH_2C = CCH_2CH_2CH_3 + H_2O \xrightarrow{H^+, Hg^{2+}} CH_3CH_2CH_2CH_2CH_2CH_2CH_3$$
4-Octyne
4-Octanone (89%)

Hydration of alkynes follows Markovnikov's rule; terminal alkynes yield methylsubstituted ketones.

HC=CCH₂CH₂CH₂CH₂CH₂CH₃ + H₂O
$$\xrightarrow{\text{H}_2SO_4}$$
 CH₃CCH₂CH₂CH₂CH₂CH₂CH₂CH₃

1-Octyne 2-Octanone (91%)

$$HC \equiv CH + H_2O \longrightarrow CH_2 = CHOH \longrightarrow CH_3CH$$
Acetylene Water Vinyl alcohol Acetaldehyde (not isolated)

RC=CR' +
$$2X_2$$
 \longrightarrow RC-CR'

Alkyne Halogen (chlorine or bromine)

CH₃C=CH + $2Cl_2$ \longrightarrow CH₃CCHCl₂

Propyne Chlorine 1,1,2,2-Tetrachloropropane (63%)

$$CH_3CH_2C \equiv CCH_2CH_3 + Br_2 \longrightarrow C \equiv C$$
 $CH_3CH_2 \subset C$
 $CH_3CH_2 \subset C$
 CH_2CH_3

3-Hexyne Bromine (E)-3,4-Dibromo-3-hexene (90%)

$$RC = CR' \xrightarrow{1. O_3} RCOH + HOCR'$$

CH₃CH₂CH₂CH₂C
$$\Longrightarrow$$
 CH₃CH₂CH₂CO₂H + HOCOH

1-Hexyne Pentanoic acid (51%) Carbonic acid

Reaction (section) and comments

Alkylation of acetylene and terminal alkynes (Section 9.6) The acidity of acetylene and terminal alkynes permits them to be converted to their conjugate bases on treatment with sodium amide. These anions are good nucleophiles and react with methyl and primary alkyl halides to form carbon—carbon bonds. Secondary and tertiary alkyl halides cannot be used, because they yield only elimination products under these conditions.

Double dehydrohalogenation of geminal dihalides (Section 9.7) An E2 elimination reaction of a geminal dihalide yields an alkenyl halide. If a strong enough base is used, sodium amide, for example, a second elimination step follows the first and the alkenyl halide is converted to an alkyne.

Double dehydrohalogenation of vicinal dihalides (Section 9.7) Dihalides in which the halogens are on adjacent carbons undergo two elimination processes analogous to those of geminal dihalides.

General equation and specific example

$$RC \equiv CH + NaNH_2 \longrightarrow RC \equiv CNa + NH_3$$
Alkyne Sodium Sodium Ammonia amide alkynide

$$RC \equiv CNa + R'CH_2X \longrightarrow RC \equiv CCH_2R' + NaX$$

Sodium Primary Alkyne Sodium halide

$$(CH_3)_3CC \equiv CH$$

$$\xrightarrow{1. \text{ NaNH}_2, \text{ NH}_3}{2. \text{ CH}_3I} \Rightarrow (CH_3)_3CC \equiv CCH_3$$
3,3-Dimethyl-1-butyne
4,4-Dimethyl-2-pentyne (96%)

$$H$$
 X
 RC — CR' + $2NaNH_2$ \longrightarrow RC \equiv CR' + $2NaX$
 H X

$$(CH_3)_3CCH_2CHCI_2 \xrightarrow{1.3NaNH_2, NH_3} (CH_3)_3CC \equiv CH$$
1,1-Dichloro-3,3-
dimethylbutane 3,3-Dimethyl-1-
butyne (56–60%)

$$H$$
 H RC — $CR' + 2NaNH2 \longrightarrow RC \equiv $CR' + 2NaX $X$$$

$$\begin{array}{c} \text{CH}_{3}\text{CH}_{2}\text{CHCH}_{2}\text{Br} & \xrightarrow{\text{1. 3NaNH}_{2}, \text{ NH}_{3}} & \text{CH}_{3}\text{CH}_{2}\text{C} \Longrightarrow \text{CH} \\ \text{Br} & & \\ \end{array}$$

1,2-Dibromobutane

1-Butyne (78–85%)